计算机视觉通道域(channel)注意力机制——SENet

属于注意力机制在cv领域的channel注意力机制,SENet一个很大的优点就是可以很方便地集成到现有网络中,提升网络性能,并且代价很小。

首先是结构:

 

原来的任意变换将输入X变为输出U,现在假设输出的U不是最优的,每个通道的重要程度不同,有的通道更有用。

对于每一输出通道,先global average pool,每个通道得到1个标量,C个通道得到C个数,然后经过FC-ReLU-FC-Sigmoid得到C个0到1之间的标量,作为通道的权重原来的输出通道每个通道用对应的权重进行加权(对应通道的每个元素与权重分别相乘),得到新的加权后的特征,作者称之为feature recalibration。

第一步每个通道HxW个数全局平均池化得到一个标量,称之为Squeeze,然后两个FC得到01之间的一个权重值,对原始的每个HxW的每个元素乘以对应通道的权重,得到新的feature map,称之为Excitation。任意的原始网络结构,都可以通过这个Squeeze-Excitation的方式进行feature recalibration,采用了改方式的网络,即SENet版本。

上面的模块很通用,也可以很容易地和现有网络集成,得到对应地SENet版本,提升现有网络性能,SENet泛指所有的采用了上述结构地网络。另外,SENet也可以特指作者 ILSVRC 2017夺冠中采用的SE-ResNeXt-152 (64 × 4d)。

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 博客之星2020 设计师:CY__ 返回首页