自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

新东方挖掘机三本技校

爱好参加各种kaggle天池等竞赛

原创 The Turn Model for Adaptive Routing中的west-first算法

图5a显示了在2D网格中禁止两次旋转的一种方法。禁止转弯的是向西的两个转弯。因此,要向西,必须从那个方向出发。这就提出了west-first-routing算法:如果需要,先向西路由一个包,然后自适应地向南、向东和向北路由。west first算法的示例路径如图5b所示。在该图中,黑色方块表示节点...

2020-05-28 17:43:59 104 0

原创 XY路由算法与转弯模型路由算法

2020-05-28 12:47:18 188 0

原创 west-first路由算法

自适应路由算法文献[ 3]提出一种拐弯模型应用于自适应路由 算法中。其基本思想是在路由中禁止最少的拐弯 以避免通道之间的循环依赖,从而有效避免死锁。 在二维 Mesh网络中,存在8种可能的拐弯并且可 能形成两个环路,如图2a所示。为了避免死锁,必 须禁止其中的一些拐弯情况。XY 路由算法通过 禁止...

2020-05-28 12:35:26 169 0

原创 非刚性配准(Non-rigid ICP )

原文https://blog.csdn.net/linmingan/article/details/79270874?utm_medium=distribute.pc_relevant.none-task-blog-baidujs-1 非刚性ICP算法可以用来3d face的配准

2020-05-26 17:22:16 534 0

原创 Frobenius norm(Frobenius 范数)

Frobenius 范数,简称F-范数,是一种矩阵范数,记为||·||F。矩阵A的Frobenius范数定义为矩阵A各项元素的绝对值平方的总和,也就是

2020-05-26 15:44:15 159 0

原创 《统计学习方法》代码全解析——第十三部分无监督学习概论

1.机器学习或统计学习一般包括监督学习、无监督学习、强化学习。 无监督学习是指从无标注数据中学习模型的机器学习问题。无标注数据是自然得到的数据,模型表示数据的类别、转换或概率无监督学习的本质是学习数据中的统计规律或潜在结构,主要包括聚类、降维、概率估计。 2.无监督学习可以用于对已有数据的分析,也...

2020-05-25 19:58:28 100 0

原创 《统计学习方法》代码全解析——第十二部分监督学习方法总结
原力计划

1 适用问题¶ 监督学习可以认为是学习一个模型,使它能对给定的输入预测相应的输出。监督学习包括分类、标注、回归。本篇主要考虑前两者的学习方法。 分类问题是从实例的特征向量到类标记的预测问题;标注问题是从观测序列到标记序列(或状态序列)的预测问题。可以认为分类问题是标注问题的特殊情况。 分类问题...

2020-05-25 19:36:44 94 0

原创 《统计学习方法》代码全解析——第十一部分条件随机场

1.概率无向图模型是由无向图表示的联合概率分布。无向图上的结点之间的连接关系表示了联合分布的随机变量集合之间的条件独立性,即马尔可夫性。因此,概率无向图模型也称为马尔可夫随机场。 概率无向图模型或马尔可夫随机场的联合概率分布可以分解为无向图最大团上的正值函数的乘积的形式。 2.条件随机场是给定输入...

2020-05-25 19:25:10 84 0

原创 《统计学习方法》代码全解析——第四部分朴素贝叶斯

1.朴素贝叶斯法是典型的生成学习方法。生成方法由训练数据学习联合概率分布 ????(????,????) P(X,Y) ,然后求得后验概率分布 ????(????|????) P(Y|X) 。具体来说,利用训练数据学习 ????(????|????) P(X|Y) 和 ????(????) P(Y...

2020-05-25 18:45:00 111 0

原创 《统计学习方法》代码全解析——第三部分k近邻法
原力计划

1. ???? 近邻法是基本且简单的分类与回归方法。 ???? k 近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的 ???? 个最近邻训练实例点,然后利用这 ???? 个训练实例点的类的多数来预测输入实例点的类。 2. ???? 近邻模型对应于基于训练数据集对特征空间的一...

2020-05-25 18:01:44 117 0

原创 《统计学习方法》代码全解析——第二部分 感知机
原力计划

1.感知机是根据输入实例的特征向量 ???? x 对其进行二类分类的线性分类模型: 感知机模型对应于输入空间(特征空间)中的分离超平面 ????⋅????+????=0 2.感知机学习的策略是极小化损失函数: 3.感知机学习算法是基于随机梯度下降法的对损失函数的最优化算法,有原始形式...

2020-05-25 17:31:28 100 0

原创 《统计学习方法》代码全解析——第一部分统计学习方法概论
原力计划

1.统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行分析与预测的一门学科。统计学习包括监督学习、非监督学习、半监督学习和强化学习。 2.统计学习方法三要素——模型、策略、算法,对理解统计学习方法起到提纲挈领的作用。 3.本书主要讨论监督学习,监督学习可以概括如下:从给定有限的训练数...

2020-05-25 16:42:18 130 0

原创 Python面试题解答——第三部分Python高级
原力计划

元类 42.Python中类方法、类实例方法、静态方法有何区别? 类方法: 是类对象的方法,在定义时需要在上方使用 @classmethod 进行装饰,形参为cls,表示类对象,类对象和实例对象都可调用 类实例方法: 是类实例化对象的方法,只有实例对象可以调用,形参为self,指代对象本身; ...

2020-05-24 22:58:06 122 0

原创 Python面试题解答——第二部分企业面试题
原力计划

企业面试题 企业面试题 15.python新式类和经典类的区别? a. 在python里凡是继承了object的类,都是新式类 b. Python3里只有新式类 c. Python2里面继承object的是新式类,没有写父类的是经典类 d. 经典类目前在Python里基本没有应用 ...

2020-05-24 21:35:11 199 0

原创 Python面试题解答——第一部分

文件操作 1.有一个jsonline格式的文件file.txt大小约为10K def get_lines(): with open('file.txt','rb') as f: return f.readlines() if ...

2020-05-24 17:58:40 174 0

原创 第十五章 面向对象程序设计

第十五章 面向对象程序设计 OOP:概述 面向对象程序设计(object-oriented programming)的核心思想是数据抽象、继承和动态绑定。 继承(inheritance): 通过继承联系在一起的类构成一种层次关系。 通常在层次关系的根部有一个基类(base class)...

2020-05-24 16:31:06 70 0

原创 第十三章 拷贝控制

第十三章 拷贝控制 拷贝控制操作(copy control): 拷贝构造函数(copy constructor) 拷贝赋值运算符(copy-assignment operator) 移动构造函数(move constructor) 移动赋值函数(move-assignement oper...

2020-05-24 16:23:09 39 0

原创 c++ primer课后题答案 第9章 : 顺序容器
原力计划

练习9.1 对于下面的程序任务,vector、deque和list哪种容器最为适合?解释你的选择的理由。如果没有哪一种容器优于其他容器,也请解释理由。 (a) 读取固定数量的单词,将它们按字典序插入到容器中。我们将在下一章中看到,关联容器更适合这个问题。 (b) 读取未知数量的单词,总是将单词插入...

2020-05-24 16:16:34 72 0

原创 c++ primer练习题 第七章 类 (Class)

练习7.1 使用2.6.1节定义的Sales_data类为1.6节的交易处理程序编写一个新版本。 解: #include <iostream> #include <string> using std::cin; using std::cout; using std::e...

2020-05-24 15:29:35 73 0

原创 链接装载库

内存、栈、堆 一般应用程序内存空间有如下区域: 栈:由操作系统自动分配释放,存放函数的参数值、局部变量等的值,用于维护函数调用的上下文 堆:一般由程序员分配释放,若程序员不释放,程序结束时可能由操作系统回收,用来容纳应用程序动态分配的内存区域 可执行文件映像:存储着可执行文件在内存中的映像...

2020-05-24 02:07:27 125 0

原创 一文总结More Effective c++

仔细区别 pointers 和 references(当你知道你需要指向某个东西,而且绝不会改变指向其他东西,或是当你实现一个操作符而其语法需求无法由 pointers 达成,你就应该选择 references;任何其他时候,请采用 pointers) 最好使用 C++ 转型操作符(static...

2020-05-24 00:37:06 67 0

原创 一文总结《Effective C++》

Effective C++ 视 C++ 为一个语言联邦(C、Object-Oriented C++、Template C++、STL) 宁可以编译器替换预处理器(尽量以 const、enum、inline 替换 #define) 尽可能使用 const 确定对象被使用前已先被初始化(构造时...

2020-05-24 00:23:41 47 0

原创 组卷积(group convolution)

说明分组卷积之前我们用一张图来体会一下一般的卷积操作。 从上图可以看出,一般的卷积会对输入数据的整体一起做卷积操作,即输入数据:H1×W1×C1;而卷积核大小为h1×w1,通道 为C1,一共有C2个,然后卷积得到的输出数据就是H2×W2×C2。这里我们假设输出和输出的分辨率是不变的。主要看这...

2020-05-23 23:15:25 149 0

原创 Faster R-CNN的RPN网络

RPN结构说明: 1. 从基础网络提取的第五卷积层特征进入RPN后分为两个分支,其中一个分支进行针对feature map(上图conv-5-3共有512 个feature-map)的每一个位置预测共(9*4=36)个参数,其中9代表的是每一个位置预设的9种形状的anchor-box,4对 应的是...

2020-05-23 23:03:22 129 0

原创 FCN

一句话概括就是:FCN将传统网络后面的全连接层换成了卷积层,这样网络输出不再是类别而是 heatmap;同时为了解决因为 卷积和池化对图像尺寸的影响,提出使用上采样的方式恢复。 作者的FCN主要使用了三种技术: 卷积化(Convolutional) 上采样(Upsample) 跳跃结构(Skip ...

2020-05-23 22:57:14 106 0

原创 YOLO系列

YOLOv1 (1) 给个一个输入图像,首先将图像划分成7 * 7的网格。 (2) 对于每个网格,每个网格预测2个bouding box(每个box包含5个预测量)以及20个类别概率,总共输出7×7×(2*5+20) =1470个tensor (3) 根据上一步可以预测出7 * 7 * 2 = 9...

2020-05-23 22:38:07 64 0

原创 Very Deep Convolutional Networks for Large-Scale Image Recognition

《Very Deep Convolutional Networks for Large-Scale Image Recognition》 arXiv:https://arxiv.org/abs/1409.1556 intro:ICLR 2015 homepage:http://www.robots...

2020-05-23 22:25:17 153 0

原创 PyTorch 深度学习:38分钟快速入门——RNN 做图像分类

RNN 特别适合做序列类型的数据,那么 RNN 能不能想 CNN 一样用来做图像分类呢?下面我们用 mnist 手写字体的例子来展示一下如何用 RNN 做图像分类,但是这种方法并不是主流,这里我们只是作为举例。RNN 做图像分类 import sys sys.path.append('...

2020-05-23 00:07:44 256 0

原创 PyTorch 深度学习:37分钟快速入门——FCN 做语义分割
原力计划

语义分割是一种像素级别的处理图像方式,对比于目标检测其更加精确,能够自动从图像中划分出对象区域并识别对象区域中的类别 在 2015 年 CVPR 的一篇论文 Fully Convolutional Networks for Semantic Segmentation 这篇文章提出了全卷积的概念,...

2020-05-22 23:53:25 183 1

原创 PyTorch 深度学习:36分钟快速入门——GAN
原力计划

自动编码器和变分自动编码器,不管是哪一个,都是通过计算生成图像和输入图像在每个像素点的误差来生成 loss,这一点是特别不好的,因为不同的像素点可能造成不同的视觉结果,但是可能他们的 loss 是相同的,所以通过单个像素点来得到 loss 是不准确的,这个时候我们需要一种全新的 loss 定义方式...

2020-05-22 23:24:38 244 0

原创 PyTorch 深度学习:35分钟快速入门——变分自动编码器
原力计划

变分编码器是自动编码器的升级版本,其结构跟自动编码器是类似的,也由编码器和解码器构成。 回忆一下,自动编码器有个问题,就是并不能任意生成图片,因为我们没有办法自己去构造隐藏向量,需要通过一张图片输入编码我们才知道得到的隐含向量是什么,这时我们就可以通过变分自动编码器来解决这个问题。 其实原理特别简...

2020-05-22 22:45:04 140 0

转载 Truncated Signed Distance Function: Experiments on Voxel Size

论文:Truncated Signed Distance Function: Experiments on Voxel Size 简称:TSDF 作者:Diana Werner等 时间:2014 相关:SDF 重要的一张图: (a)中,绿色是物体表面,蓝色三角是视锥范围,黄色深...

2020-05-20 22:01:19 197 0

原创 PyTorch 深度学习:34分钟快速入门——自动编码器
原力计划

自动编码器最开始是作为一种数据压缩方法,同时还可以在卷积网络中进行逐层预训练,但是随后更多结构复杂的网络,比如 resnet 的出现使得我们能够训练任意深度的网络,自动编码器就不再使用在这个方面,下面我们讲一讲自动编码器的一个新的应用,这是随着生成对抗模型而出现的,就是使用自动编码器生成数据。 ...

2020-05-19 01:38:15 219 0

原创 PyTorch 深度学习:33分钟快速入门——VGG
原力计划

CIFAR 10¶ cifar 10 这个数据集一共有 50000 张训练集,10000 张测试集,两个数据集里面的图片都是 png 彩色图片,图片大小是 32 x 32 x 3,一共是 10 分类问题,分别为飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。这个数据集是对网络性能测试一个非常重要...

2020-05-19 01:20:12 267 0

原创 PyTorch 深度学习:32分钟快速入门——ResNet
原力计划

ResNet 当大家还在惊叹 GoogLeNet 的 inception 结构的时候,微软亚洲研究院的研究员已经在设计更深但结构更加简单的网络 ResNet,并且凭借这个网络子在 2015 年 ImageNet 比赛上大获全胜。 ResNet 有效地解决了深度神经网络难以训练的问题,可以训练高...

2020-05-19 01:00:36 74 0

原创 PyTorch 深度学习:32分钟快速入门——DenseNet

DenseNet¶ 因为 ResNet 提出了跨层链接的思想,这直接影响了随后出现的卷积网络架构,其中最有名的就是 cvpr 2017 的 best paper,DenseNet。 DenseNet 和 ResNet 不同在于 ResNet 是跨层求和,而 DenseNet 是跨层将特征在通道...

2020-05-18 21:56:50 134 0

原创 PyTorch 深度学习:31分钟快速入门——Batch Normalization
原力计划

Batch Normalization¶ 前面在数据预处理的时候,我们尽量输入特征不相关且满足一个标准的正态分布,这样模型的表现一般也较好。但是对于很深的网路结构,网路的非线性层会使得输出的结果变得相关,且不再满足一个标准的 N(0, 1) 的分布,甚至输出的中心已经发生了偏移,这对于模型的训练...

2020-05-18 21:44:51 143 0

原创 PyTorch 深度学习:30分钟快速入门

卷积¶ 卷积在 pytorch 中有两种方式,一种是 torch.nn.Conv2d(),一种是 torch.nn.functional.conv2d(),这两种形式本质都是使用一个卷积操作 这两种形式的卷积对于输入的要求都是一样的,首先需要输入是一个 torch.autograd.Varia...

2020-05-18 20:54:35 101 0

原创 PyTorch系列入门到精通——GPU的使用

PyTorch系列入门到精通——GPU的使用

2020-05-18 20:47:04 74 0

原创 PyTorch系列入门到精通——梯度消失与爆炸,损失函数

PyTorch系列入门到精通——梯度消失与爆炸

2020-05-18 20:33:12 130 0

提示
确定要删除当前文章?
取消 删除